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Abstract—The Weil bound for character sums is a deep
result in Algebraic Geometry with many applications both
in mathematics and in the theoretical computer science.
The Weil bound states that for any polynomial f(x) over
a finite field F and any additive character χ : F → C,
either χ(f(x)) is a constant function or it is distributed
close to uniform. The Weil bound is quite effective as long
as deg(f) �

√
|F|, but it breaks down when the degree

of f exceeds
√
|F|. As the Weil bound plays a central

role in many areas, finding extensions for polynomials of
larger degree is an important problem with many possible
applications.

In this work we develop such an extension over finite
fields Fpn of small characteristic: we prove that if f(x) =
g(x) + h(x) where deg(g) �

√
|F| and h(x) is a sparse

polynomial of arbitrary degree but bounded weight degree,
then the same conclusion of the classical Weil bound still
holds: either χ(f(x)) is constant or its distribution is close
to uniform. In particular, this shows that the subcode of
Reed-Muller codes of degree ω(1) generated by traces of
sparse polynomials is a code with near optimal distance,
while Reed-Muller of such a degree has no distance (i.e.
o(1) distance) ; this is one of the few examples where one
can prove that sparse polynomials behave differently from
non-sparse polynomials of the same degree.

As an application we prove new general results for
affine invariant codes. We prove that any affine-invariant
subspace of quasi-polynomial size is (1) indeed a code (i.e.
has good distance) and (2) is locally testable. Previous
results for general affine invariant codes were known only
for codes of polynomial size, and of length 2n where
n needed to be a prime. Thus, our techniques are the
first to extend to general families of such codes of super-
polynomial size, where we also remove the requirement
from n to be a prime. The proof is based on two main
ingredients: the extension of the Weil bound for character
sums, and a new Fourier-analytic approach for estimating
the weight distribution of general codes with large dual
distance, which may be of independent interest.

I. INTRODUCTION

In this work we provide a new extension to the Weil
bound for character sums. Additionally, we develop a
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new approach for estimating the weight distribution of
general codes whose dual has large distance, which
greatly extends the method of Krawtchouk polynomials.
We combine these results for obtaining better under-
standing of general families of affine invariant codes of
quasi-polynomial size, extending previous results which
could only handle such codes of polynomial size.

A. Character sums

Let F be a finite field. An additive character is a
function χ : F → C for which χ(x + y) = χ(x)χ(y)
(and which is not the identically zero function). For
F = Fpn , the additive characters are given by χa(x) =

e
2πi
p Tr(ax), where a ∈ Fpn and the Trace operator Tr :

Fpn → Fp is defined as Tr(x) =
∑n−1
i=0 x

pi .
The Weil bound for character sums [14] is a deep

result from Algebraic Geometry. The result deals with
character sums of low-degree polynomials over a finite
field F. Let f(x) ∈ F[x] be a univariate polynomial of
degree at most

√
|F|. Let χ : F → C be any additive

character. Weil’s bound states that either χ(f(x)) is
constant, or is distributed close to uniform when x ∈ F
is uniformly chosen.

Theorem I.1 (Weil bound [14]). Let f(x) be a uni-
variate polynomial over F of degree ≤ |F|1/2−δ . Let
χ : F → C be any additive character. Then either
χ(f(x)) is constant for all x ∈ F, or

|Ex∈F[χ(f(x))]| ≤ |F|−δ.

The Weil bound, being a general and powerful result,
has found many applications in mathematics and also in
theoretical computer science, in particular in the areas
of pseudorandomness, explicit constructions and coding
theory. For example, it has been used in the study of
extractors ([5], [15]) and in the study of locally testable
codes ([4], [10]). The Weil bound is very effective for
polynomials of degree �

√
|F|, however it fails for

polynomials of degree exceeding
√
|F|. We establish

a general result in fields of small characteristics Fpn



which allows to extend polynomials by a small number
of monomials of larger degree, as long as they have
small weight degree. In particular, in some range of
the parameters we may add O(n) monomials, while
in another range we can add monomials of degree
pn−logn. Both of these extend the classic Weil bound
significantly.

Definition I.2 (Weight degree). Let t ∈ {0, . . . , pn−1}.
The weight degree of t is the hamming weight of the
digits of t in base p. That is, let t =

∑n−1
i=0 tip

i be the
representation of t in base p, where 0 ≤ ti ≤ p − 1.
The weight degree of t is

wt(t) =

n−1∑
i=0

ti.

The weight degree of a monomial xt is the weight
degree of t, and the weight degree of a univariate
polynomial f(x) is the maximal weight degree of a
monomial in it with a nonzero coefficient.

We prove the following extension of the Weil bound
in case f(x) is the sum of a low degree polynomial
and a small number of monomials of bounded weight
degree (but of arbitrary degree).

Theorem I.3 (Extension of the Weil bound). Let
f(x) = g(x) + h(x) be a univariate polynomial over
Fpn , where g(x) is a polynomial of degree ≤ |F|1/2−δ
and h(x) is the sum of at most k ≥ 1 monomials, each
of weight degree at most d. Let χ : Fpn → C be an
additive character. Then either χ(f(x)) is constant for
all x ∈ Fpn , or

|Ex∈F[χ(f(x))]| ≤ |Fpn |−
δ

2d22dk .

Note that in order to get a meaningful bound, we need
our parameters to obey kd22d ≤ O(n). Note that for
d ≤ (1− ε) log2(n) we may have k = nO(1). This can
be compared to a relatively recent result of Bourgain [1]
of a similar flavor. We state it below informally, as the
exact formulation is somewhat complex, and we will
not require it in the paper.

Theorem I.4 (Bourgain’s extension of Weil bound [1]).
Let f(x) = g(x) + h(x) be a univariate polynomial
over a prime finite field Fq , where g(x) is a polynomial
of degree ≤ |Fq|1/2−δ and h(x) is the sum of at most
k = O(1) monomials, each of degree at most |Fq|1−ε.
Let χ : Fq → C be an additive character. Then either
χ(f(x)) is constant for all x ∈ Fq , or∣∣Ex∈Fq [χ(f(x))]

∣∣ ≤ |Fq|−Ω(1).

Comparing our result with the result of Bourgain,
we note several important advantages of our work:
first, we can handle non-prime finite fields; second,
when d ≤ O(log n) is small enough, we may have
k = poly(n) monomials of high degree, while in the
result of Bourgain one can take at most k = O(1) such
monomials; Third, we can handle additional monomials
with degree up to pn−logn, while Bourgain result (even
if worked for non prime fields) would allow degree
bounded by pn/c for some constant c < 1. In contrast,
the result of Bourgain does not assume a bound on the
weight degree of the monomials. The advantages of our
work are crucial for our applications to estimating the
weight distributions of codes, and for local testability
of codes.

Finally, we view Theorem I.3 as an important step
towards understanding sparse polynomials. Sparse poly-
nomials arise naturally in many areas of theoretical
computer science, most notably in circuit complexity
and learning theory. To date, our understanding of the
behavior of sparse polynomial has been quite limited.
An immediate corollary of Theorem I.3 gives what is,
to the best of our knowledge, the first result which sep-
arates the behavior of sparse polynomials from general
polynomials (of the same degree), in the context of
small finite fields.

The Reed-Muller code RMp(n, d) is a code gen-
erated by all n-variate polynomials over Fp of total
degree at most d. It can equivalently be described as
T ({e ∈ Fnp : wt(e) ≤ d}), i.e. codewords are traces
of univariate polynomials of Fpn of weight degree at
most d. The minimal distance of RMp(n, d) is well
known; in particular, whenever d = ω(1) the minimal
distance is o(1). To the contrast, let C be a (nonlinear)
code generated by traces of sparse polynomials. Our
results show that the code C ⊂ RMp(n, d) has far better
minimal distance; in fact, it has near optimal distance.
This argument holds even when d = O(log n) and the
sparsity is nO(1). Previous similar results were only
known for constant sparsity.

Corollary I.5. Fix d ≤ O(log n). Let t1, . . . , tk ∈ [pn−
1] be chosen of weight degree at most d, where k =
O( n

d22d
). Consider the code C = {Tr(

∑k
i=1 aix

ti) :
ai ∈ Fpn}. Then

1) C is a subcode of RMp(n, d);
2) The minimal distance of C is at least 1 − 1/p −

p−Ω(n).



B. Weight distribution of linear codes

Using a Fourier-analytic technique we show new
estimates of the weight distribution of linear codes with
large dual distance. This result combined with our new
extension to the Weil bound imply estimation of the
weight distribution of every affine-invariant code of
super-polynomial size.

A code is a subset C ⊂ FNp , which can equivalently
be viewed as a family of functions C = {f : [N ] →
Fp}. All codes we consider in this work are linear1.
The dimension of a code is dim(C) = logp(|C|).

Let C ⊂ FNp be any linear code. Let Const = {aN :
a ∈ Fp} be the linear code of constant words. Note
that as C is a linear code, then either Const ⊂ C or
Const ∩ C = {0N}. We define the distance between C
and the code of constant words as the minimal distance
between a nonconstant codeword of C and a constant
word,

dist(C,Const) = min
f∈C\Const

min
a∈Fp

|{i ∈ [N ] : fi 6= a}|
N

.

The dual of a linear code is defined as

C⊥ = {g ∈ FNp :

N∑
i=1

figi = 0}.

We prove the following theorem, which gives a tight
estimation on the weight distribution of C⊥ based on
the distance between C and the constant word codes.
Previous results on the weight distribution of general
codes (e.g. [6]) were based on the use of Krawtchouk
polynomials. These results applied only to binary codes
whose duals have distance very close to 1/2. I.e. they
didn’t apply to codes with some arbitrary constant
distance as we have here.

Theorem I.6 (Weight distribution result). Let C ⊂ FNp
be a linear code, and assume that dist(C,Const) = δ >
0. For every ε > 0 there exist `min = O( 1

δ log(|C|) +

log(1/ε)) and `max = O(
√
εN), such that for any

` ∈ [`min, `max] the following holds. The number of
codewords g ∈ C⊥ of weight exactly ` is given by
α · N

`

|C| (1± ε), where

• α = (p−1)`

`! if C ∩ Const = {0N}.
• α = C(p,`)

`! if Const ⊂ C, where Cp,` =

|{v1, . . . , v` ∈ Fp \ {0} :
∑`
i=1 vi = 0}|.

1A code C = {f : Fpn → Fp} is linear if for any f(x), g(x) ∈ C
also h(x) = αf(x) + βg(x) ∈ C where α, β ∈ Fp.

C. Application to Locally testable codes

Let FN = Fpn be a finite field, where we think of
p as either constant or small. In this context, a code is
a family of functions C = {f : Fpn → Fp}. A code
is locally testable if there is a randomized algorithm,
which when given as input a function f : Fpn → Fp,
probes f in a small number of locations and determines
(with high probability) whether f ∈ C or f is far2 from
all codewords of C. A code is q-locally testable if the
number of probes is at most q, where q is sublinear in
the code length, i.e. q = o(N).

A recent line of research in property testing focuses
on characterization of general families of codes that are
locally testable [6], [8], [4], [11]. The known results
for general codes that are locally testable apply only
to sparse codes over binary fields F2, which are codes
of size NO(1). This is in contrast to result for specific
families of codes (such as Reed-Muller codes) for
which much better results are known. It is an important
problem to better understand general codes. One reason
is that such an understanding might aid in finding
specific codes with better parameters; while another is
to understand the extremal properties of such codes.

In this work we break the sparsity requirement for
local testability of general codes. Namely, we exhibit a
general family of codes of size N (logN)O(1)

that are
locally testable with logNO(1) queries. We achieve
this by studying affine invariant codes. A code C =
{f : Fpn → Fp} is affine invariant if it is invariant
under affine transformation of the coordinates of the
input space. That is, if f(x) ∈ C then also g(x) =
f(ax + b) ∈ C for any a, b ∈ Fpn , a 6= 0. Previous
results [4] showed that sparse affine invariant codes
over F2 of length 2n for prime n (i.e., codes of size
NO(1)) are locally testable. We significantly extend this
to codes of size super-polynomial in N , i.e. to codes
of size at most N (logN)O(1)

. Moreover, we remove the
requirement from n to be a prime.

Theorem I.7 (Testing result (informal)). Let C = {f :
Fpn → Fp} be a linear subspace which is affine
invariant of size N (logN)ε for any ε < log p

log 2p and n
large enough. Then the following holds:
• C is a code, namely it has a constant distance.
• C is locally testable with query complexity q =
poly(dim(C)/n).

In particular, any sparse affine invariant code (i.e. with
dim(C) = O(n)) is locally testable with constant query

2If f has distance ε from C, i.e. if ming∈C Prx∈Fpn [f(x) 6=
g(x)] = ε, we require the local test to reject f with probability at
least Ω(ε).



complexity q = O(1).

Our result generalizes the result of Grigorescu, Kauf-
man and Sudan [4] in few aspects: First, the result of [4]
applies only to sparse codes (i.e codes of size NO(1))
while our result applies to codes with super polynomial
number of codewords (i.e. to codes of size at most
NO(logN)). Second, the result of [4] could work only
for fields of size 2n where n needed to be prime, while
we remove the requirement for n to be prime. Third,
we provide a self-contained proof of a generalization
of [4], which used complex machinery (such as Bour-
gain’s extension to the Weil bound, and properties of
Krawtchouk polynomials). Moreover, previous results
on the testability of sparse codes applied only to binary
fields F2, while our result applies to any field of small
characteristic. The testing result uses our new extension
to the Weil bound as well as our new estimation on the
weight distribution of codes with large dual distance.

II. PROOFS OVERVIEW

In this section we provide overviews of the proofs
of our main theorems. Due to space limitations, this
proceeding version contains only the full proof of the
new estimation of the weight distribution of codes with
large dual distance, i.e. Theorem I.6 in Section III. Other
full proofs can be found in the full version of this paper.

A. New extension to the Weil bound
The proof of our new extension for the Weil bound

relies on techniques borrowed from additive combina-
torics. This demonstrates yet another connection be-
tween additive combinatorics and theoretical computer
science. Such connections were used before to establish
results regarding pseudorandom generators [2], [12],
[13] and list-decoding of codes [7].

We sketch in high level how we achieve the new
extension to the Weil bound. Let f(x) = g(x) + h(x)
be a univariate polynomial over Fpn , where deg(g) ≤
|Fpn |1/2−δ and h(x) is the sum of k monomials, each of
weight degree at most d. We need to prove that either
Tr(f) : Fpn → Fp is a constant function, or that it
is highly unbiased (note that proving the result for the
Trace operator implies it immediately for all additive
characters).

The analysis divides into two cases: either g has
high weight-degree wt(g) ≥ d + 1, or g has low
weight-degree wt(g) ≤ d. The first case is the easier
one, and both cases rely on an analysis of directional
derivatives of polynomials. The directional derivative of
a polynomial f(x) in direction y ∈ Fpn is given by
fy(x) = f(x + y) − f(x), and iterated derivatives are
defined as fy1,...,yk(x) = (fy1,...,yk−1

)yk(x).

The case of high weight g: The first case, where
wt(g) ≥ d + 1 is easy to analyze by taking enough
derivatives that eliminate h(x), and reducing to a the-
orem of Deligne [3], which is a multivariate analog of
Weil’s bound. Specifically, For any y1, . . . , yd+1 one can
verify that since wt(h) ≤ d then

hy1,...,yd+1
≡ 0,

hence fy1,...,yd+1
≡ gy1,...,yd+1

. An iterated application
of the Cauchy-Schwarz inequality yields that∣∣∣∣Ex∈Fpn [ωTr(f(x))]

∣∣∣∣2d+1

≤∣∣∣∣Ex,y1,...,yd+1∈Fpn [ωTr(fy1,...,yd+1
(x))]

∣∣∣∣
where ω = e

2πi
p . Hence to prove that Tr(f(x))

in unbiased for uniform x, it is sufficient to
prove that Tr(fy1,...,yd+1

(x)) is unbiased for uniform
x, y1, . . . , yd+1. We then verify that as g is of weight
degree at least d + 1, it is not eliminated by taking
generic d+ 1 derivatives, and we get that fy1,...,yd+1

(x)
is a nonzero polynomial in the variables x, y1, . . . , yd+1

of total degree at most deg(g) ≤ |Fpn |1/2−δ . Moreover,
we can prove that Tr(fy1,...,yd+1

(x)) is not a constant
function; hence by Deligne’s theorem we deduce that∣∣∣∣Ex,y1,...,yd+1∈Fpn [ωTr(fy1,...,yd+1

(x))]

∣∣∣∣ ≤ |F|−δ
and the bound on the bias of Tr(f(x)) follows.

The case of low weight g: The harder case is han-
dling g of small weight wt(g) ≤ d, since h cannot sim-
ply be eliminated by taking enough iterated derivatives,
without eliminating f altogether. We solve this problem
by taking a smaller number of derivatives, such that f is
not eliminated, but instead is transformed into a special
class of polynomials (p-multilinear polynomials). We
then proceed to study this family of polynomials, and
are able to bound the bias of such polynomials, given
that they came from a polynomial f = g + h where
g has low degree and h is the sum of a small number
of low weight degree monomials. Most of the technical
challenges of the proof are in this part.

B. Estimations on weight distribution of codes
Following we describe our approach for estimating

the weight distribution of general codes whose duals
have large distance. A central notion that is useful here
is the bias of a code. The bias of a codeword f ∈ C is
defined as

bias(f) =
∣∣∣Ex∈[N ][ω

f(x)]
∣∣∣ =

∣∣∣∣∣∣ 1

N

∑
x∈[N ]

ωf(x)

∣∣∣∣∣∣ ,



where ω = e2πi/p. We define the bias of a code as the
maximal bias of a nonconstant codeword:

bias(C) = max
f∈C\Const

bias(f).

Note that always bias(C) < 1 and that as the distance
of the code gets larger the bias of the code gets smaller.

We relate the codewords in C⊥ with the following
sets. For v = (v1, . . . , v`) ∈ {1, . . . , p− 1}` define the
sets

A`(v) = {(x1, . . . , x`) ∈ [N ]` :∑̀
i=1

vif(xi) = 0 ∀f ∈ C}

and

B`(v) = {(x1, . . . , x`) ∈ A`(v) :

x1, . . . , x` are distinct}.

It follows from the definition that number of codewords
in C⊥ of weight ` is 1

`!

∑
v∈{1,...,p−1}` |B`(v)|. Hence,

to obtain our estimation on the weight distribution of
C⊥ we need to show that |B`(v)| ≈ N `/|C|. The main
step is to show that |A`(v)| ≈ N `/|C|. From the last we
deduce the estimate for |B`(v)|. For estimating |A`(v)|,
we take (x1, . . . , x`) ∈ [N ]`, and consider

Ef∈C
[
ωv1f(x1)+...+v`f(x`)

]
,

The above expectation is 1 iff (x1, . . . , x`) ∈ A`(v)
and otherwise it is 0. This holds since C is a lin-
ear subspace. I.e., either the inner product of v with
(f(x1), . . . , f(x`)) is always zero; or it is uniformly
distributed over Fp when f ∈ C is uniformly chosen.
Hence we have

N−`|A`(v)| = Ex1,...,x`∈[N ] [µ(x1, . . . , x`)]

= Ex1,...,x`∈[N ]Ef∈C
[
ωv1f(x1)+...+v`f(x`)

]
= Ef∈C

∏̀
i=1

Exi∈[N ]

[
ωvif(xi)

]
.

We partition the expectation to the cases where
f = 0N and f 6= 0N . When f = 0N then for all
i = 1, . . . , ` we have that Exi∈[N ]

[
ωvif(xi)

]
= 1. If

f is non constant
∣∣Exi∈[N ]

[
ωvif(xi)

]∣∣ ≤ bias(C) ≤ δ.
Hence we deduce that

|A`(v)| = N `

|C|
(1 + η)

where |η| ≤ |C|δ`. I.e. for codes with small bias (that
is of large distance) |A`(v)| ≈ N `/|C|. We use our

extension to the Weil bound to show that affine invariant
subspaces of super-polynomial size have very small bias
(and hence are in fact codes), and form this we deduce
estimation on the weight distribution of their duals.

C. The connection between character sums and the
testability of affine invariant codes

We sketch in high level how we achieve our improved
testability result for affine-invariant codes using the
new extension to the Weil bound. Basically, we follow
the proof idea of [4]. They use Bourgain’s result for
character sums, as well as properties of Krawtchouk
polynomials. We replace these ingredients with our new
expansion to the Weil bound and our new estimation to
the weight distribution of linear codes.

Affine invariant codes can be characterized by trace
codes. Let S ⊆ {0, . . . , pn− 1}. The S-trace code over
Fpn is defined as the family of functions f : Fpn → Fp
given by

T (S) =

{(
Tr(
∑
e∈S

aex
e) : Fpn → Fp

)
: ae ∈ Fpn

}
.

where we recall that the Trace function Tr : Fpn → Fp
is given by Tr(x) =

∑n−1
i=0 x

pi . For example, Gen-
eralized Reed-Muller codes RMp(n, d), which are the
family of functions f : Fnp → Fp where f is an n-
variate polynomial of total degree at most d, can be
equivalently characterized as

RMp(n, d) = T ({e ∈ {0, . . . , pn − 1} : wt(e) ≤ d}).

We define two important properties of trace codes.

Definition II.1 (Shift closed). Let S ⊆ {0, . . . , pn −
1}. The set S is said to be shift closed if, for every
e ∈ S, we also have that ep` (mod pn) ∈ S for all
` = 1, . . . , n.

The term shift closed comes from viewing elements
e ∈ S as vectors in Fnp , given by the representation of
e in base p. In this case, ep` (mod pn) corresponds to
a cyclic shift of the vector by ` coordinates.

Definition II.2 (Shadow closed). Let S ⊆ {0, . . . , pn−
1}. The set S is said to be shadow closed if the
following holds. For any e ∈ S, let e =

∑n−1
i=0 eip

i

be the representation of e in base p. Define the support
of e to be the set of nonzero digits of e,

support(e) = {0 ≤ i ≤ n− 1 : ei 6= 0}.

Let e′ be obtained from e by changing some of the
non-zero digits of e, i.e.

e′ =
∑

i∈support(e)

e′ip
i.



Then we should have that also e′ ∈ S. That is, S is
shadow closed if ∑
i∈support(e)

e′ip
i : e ∈ S, (e′i)i∈support(e) ∈ Fp

 ⊆ S.
A set S is said to be affine closed if it is both

shift closed and shadow closed. The following general
result was established by Kafuman and Sudan [9]. They
show that the class of affine invariant linear codes is
equivalent to the class of trace codes of affine closed
sets.

Theorem II.3 (Monomial extraction [9]). Let C = {f :
Fpn → Fp} be an affine invariant linear code. Then
there exists an affine closed set S ⊆ {0, . . . , pn − 1}
such that C = T (S). Moreover, for any affine closed
set S the code T (S) is linear and affine invariant.

Thus, to study affine invariant codes, we need to study
trace codes. Recall, the dual of a code C = {f : Fpn →
Fp} is defined as

C⊥ =

(g : Fpn → Fp) :
∑
x∈Fpn

f(x)g(x) = 0 ∀f ∈ C

 .

The affine closure of a function g : Fpn → Fp is the set
of functions obtained by applying affine transformations
on the coordinates of the input space of f , that is

affine(g) =

{
(g(ax+ b) : Fpn → Fp) : a, b ∈ Fpn

}
.

It is easy to verify that if C is an affine invariant code,
and g ∈ C⊥, then in fact affine(g) ⊆ C⊥. An important
case is when in fact affine(g) spans the entire code C⊥.

Definition II.4 (Single orbit property). Let g ∈ C⊥. We
say that C has the single orbit property for g if the affine
closure of g is a spanning set for C⊥, that is if

C = Span(affine(g))⊥.

We will shortly see that the single orbit property is
tightly connected to locally testing properties of the
code C. First, define the weight of g : Fpn → Fp to
be the number of coordinates where g evaluates to a
nonzero value,

wt(g) = |{x ∈ Fpn : g(x) 6= 0}|.

The following result was established by Kaufman and
Sudan [9]. If C is an affine invariant code which has the

single orbit property for a codeword g ∈ C⊥ of small
weight, then C can be locally tested3.

Theorem II.5 (Theorem 2.9 in [9]). Let C = {f :
Fpn → Fp} be a linear code which is affine invariant.
Assume there exists g ∈ C⊥ such that C has the single
orbit property for g. Then C can be locally tested with
O(wt(g)2) queries.

Hence, to show that C can be locally tested, it is
sufficient to demonstrate that C⊥ is spanned by the orbit
of a short codeword under the affine group.

Let C = T (S) for some affine closed set S ⊆
{0, . . . , pn − 1}. The dual code of C is a dual-trace
code dT (S), which can be verified to be

dT (S) =

{
(f : Fpn → Fp) :∑
x∈Fpn

f(x)xe = 0 ∀e ∈ S
}
.

We need to establish that there exists f ∈ dT (S)
of small weight such that Span(affine(f)) = dT (S).
Assume that this is false, i.e. that Span(affine(f)) (
dT (S). Using the fact that S is affine invariant, we show
that in fact f ∈ dT (S ∪ {e}) where e ∈ {0, . . . , pn −
1} \ S has small weight.

Hence, in order to conclude the proof, we will show
that for a suitably chosen weight `, there exist code-
words on weight ` in dT (S) which are not in any of
dT (S ∪ {e}) for any e /∈ S which has small weight.
The main tool we develop in order to do so, is a tight
estimate on the number of codewords of weight ` in
dual-trace codes. We show the following result.

Lemma. Let S ⊆ {0, . . . , pn − 1} be affine closed.
Define S′ = {e ∈ S : (p, e) = 1} to be the set of
elements in S which are co-prime to p, and assume
that |S′| ≤ nε where ε < log p/ log 2p and n is large
enough. Then there exists `min = O(|S|) and `max =
pΩ(n) , such that for any ` ∈ [`min, `max] the following
holds. The number of codewords in dT (S) of weight
exactly ` is given by

C(p, `)

`!
pn(`−|S′|)(1 + o(1))

and where C(p, `) is given by

C(p, `) =

∣∣∣∣{(v1, . . . , v`) ∈ (Fp \ {0})` :
∑̀
i=1

vi = 0

}∣∣∣∣.
3In fact, the local test for C is performed by computing

∑
f(ax+

b)g(x) for a small random subset of a, b ∈ Fpn . Note that to perform
each such test, we only need to query f(x) only on x ∈ Fpn for
which g(x) 6= 0.



Similar results were previously obtained over binary
fields F2 using properties of Krawtchouk polynomi-
als [6], [8]. Our technique is different, and relies on
methods from additive combinatorics and Fourier anal-
ysis. In particular it allows us to extend the result to
arbitrary fields and allows to obtain bounds for a wider
range of values of `. The proof of this lemma relies on
the new extension of the Weil bound we establish, as
well as the new estimation of the weight distribution of
codes with large dual distance.

Given the lemma, the proof of Theorem I.7 can be
easily concluded. Recall that we showed that in order to
prove local testability of an affine invariant code T (S),
we need to show that there is a short codeword whose
affine closure linearly spans dT (S). We showed that
any f ∈ dT (S) for which this does not occur, is in fact
contained in some dT (S∪{e}) for some e /∈ S of small
weight. Thus, to conclude the proof we need to show
that there exist small weight codewords in

dT (S) \
⋃

e/∈S:e has small weight

dT (S ∪ {e}).

To this end we apply the tight bounds we obtain for
the number of codewords of weight ` in dual-trace
codes. We first show that if C is affine invariant of size
|C| ≤ pn

1+ε

then in fact C = dT (S) where S is affine
invariant, and |S′| ≤ nε, so our estimates for the number
of codewords apply for dT (S). Fix a suitable weight `.
The number of codewords of weight ` in dT (S) is given
by

W` =
C(p, `)

`!
pn(`−|S′|)(1 + o(1)),

where we recall that S′ = {e ∈ S : (e, p) = 1}. On
the other hand, as S is affine closed and e /∈ S, we can
bound the number of codewords of weight ` in any of
the codes dT (S ∪ {e}) by

≤ C(p, `)

`!
pn(`−|S′|−1)(1 + o(1)) ≈ p−nW`.

Thus to conclude we just need to verify that the number
of distinct e of small weight is � pn. This then can be
verified by a routine calculation.

III. WEIGHT DISTRIBUTION OF CODES WITH LARGE
DUAL DISTANCE

We begin with some definitions and then state our
theorems formally.

A. Basic coding definitions

Let Fp be a finite field. A linear code over Fp is
a linear subspace C ⊂ FNp . The dimension of a code
dim(C) is the dimension of the linear space. We will

view codewords both as elements f ∈ FNp and as
functions f : [N ] → Fp. For a linear code C, its
dual C⊥ is the set functions which are orthogonal to
all codewords of C,

C⊥ =

{
g ∈ FNp :

∑
x∈[N ]

f(x)g(x) = 0 ∀f ∈ C
}
.

Note that the dual of the dual is the original code, i.e.
(C⊥)⊥ = C. We next define the weight and support of
a codeword. The support of a codeword f ∈ C is the
set of x ∈ [N ] for which f(x) 6= 0,

support(f) = {x ∈ [N ] : f(x) 6= 0}.

The weight of a codeword is the size of its support,

wt(f) = |support(f)| = |{x ∈ [N ] : f(x) 6= 0}|.

The distance of a linear code C is the minimal hamming
distance between two distinct codewords. Equivalently,
it is the minimal weight of a nonzero codeword,

dist(C) = min
f∈C\{0N}

wt(f).

We would be interested in a related notion, which is
the distance between C and constant codewords. Let
Const = {aN : a ∈ Fp} be the code of constant
codewords. Note that as C is linear, we either have that
Const ⊂ C or that Const ∩ C = {0N}. We define
dist(C,Const) to be the minimal distance between a
nonconstant codeword of C and constant functions.

dist(C,Const) = min
f∈C\Const

min
a∈Fp

Pr
x∈[N ]

[f(x) 6= a].

Note that 0 ≤ dist(C,Const) ≤ 1 − 1/p. A related
notion, which sometimes is more convenient, is that of
bias. The bias of a codeword f ∈ C is defined as

bias(f) =
∣∣∣Ex∈[N ][ω

f(x)]
∣∣∣ =

∣∣∣∣∣∣ 1

N

∑
x∈[N ]

ωf(x)

∣∣∣∣∣∣ ,
where ω = e2πi/p. Note that 0 ≤ bias(f) ≤ 1, where
bias(f) = 1 iff f ∈ Const. We define the bias of a
code as the maximal bias of a nonconstant codeword,

bias(C) = max
f∈C\Const

bias(f).

Note that always bias(C) < 1. We now establish a
relation between distance in bias both in the case where
the distance is small and where it is near maximal.

Claim III.1. Let C ⊂ FNp be a linear code.
(i) If dist(C,Const) ≥ δ then

bias(C) ≤ 1− Ω(δ/p2).



(ii) If dist(C,Const) ≥ 1− 1/p+ δ then

bias(C) ≤ 2pδ.

Proof: Fix f ∈ C. Let q(a) = Prx∈[N ][f(x) = a].
Then

bias(f) =

∣∣∣∣∣∣
∑
a∈Fp

q(a)ωa

∣∣∣∣∣∣ . (1)

We first prove (i). Note that by our assumptions on the
distance, q(a) ≤ 1 − δ for all a ∈ Fp. We can assume
w.l.o.g that δ ≤ 1/2, as otherwise the bound will follow
the bound for δ = 1/2. One can verify that for δ ≤ 1/2
the RHS of (1) is maximized when q(0) = 1 − δ and
q(1) = δ; hence

bias(f) ≤ |(1− δ) + δω| = 1− Ω(δ/p2).

We now prove (ii). Since the distance is at least 1 −
1/p+ δ, we have q(a) ≤ 1/p+ δ for all a ∈ Fp. Hence∑
a∈Fp |q(a) − 1/p| = 2

∑
a:q(a)>1/p(q(a) − 1/p) ≤

2pδ. Using the fact that
∑
a∈Fp ω

a = 0 we get that

bias(f) =

∣∣∣∣∣∣
∑
a∈Fp

(q(a)− 1/p)ωa

∣∣∣∣∣∣
≤
∑
a∈Fp

|q(a)− 1/p| ≤ 2pδ.

Let C be a code. The next theorem provides a tight
estimate on the number of codewords in C⊥ of weight
` for a range of values of ` which depends on the
bias of C and the required error of approximation.
For simplicity of notation, we denote by t(1 ± ε) an
unspecified quantity in the range [t− tε, t+ tε].

Theorem (Theorem I.6 - Weight distribution of codes).
Let C ⊂ FNp be a linear code with bias(C) = δ < 1.
Fix ε > 0, and let `min = log1/δ |C| + log(1/ε) and
`max =

√
εN . Then for any ` ∈ [`min, `max], the number

of codewords g ∈ C⊥ of weight exactly ` is given by
(i) If C ∩Const = {0}n, Number of codewords in C⊥

of weight `:

(p− 1)`

`!

N `

|C|
(1± 2ε).

(ii) If Const ⊂ C, Number of codewords in C⊥ of
weight `:

C(p, `)

`!

N `

|C|
(1± 2ε).

where C(p, `) is equal to the following:∣∣∣∣{(v1, . . . , v`) ∈ (Fp \{0})` : v1 + . . .+v` = 0

}∣∣∣∣.

B. Proof of Theorem I.6

We start by proving (i). For any v = (v1, . . . , v`) ∈
{1, . . . , p− 1}` define the sets

A`(v) = {(x1, . . . , x`) ∈ [N ]` :∑̀
i=1

vif(xi) = 0 ∀f ∈ C}

and

B`(v) = {(x1, . . . , x`) ∈ A`(v) :

x1, . . . , x` are distinct}.

Let g ∈ C⊥ be such that g has weight exactly `. Equiv-
alently, there are distinct points x1, . . . , x` ∈ [N ] such
that

∑
f(xi)g(xi) = 0 for all f ∈ C. We can identify g

uniquely by the list of points (x1, . . . , x`) and the eval-
uation of g on these points v = (g(x1), . . . , g(x`)) ∈
{1, . . . , p− 1}`. Since the order of x1, . . . , x` does not
matter, and they are all distinct, there are `! elements
in ·∪B`(v) which correspond to g, (i.e. these elements
correspond to all orderings of x1, . . . , x`). Thus we
obtain the following identity, Number of codewords in
C⊥ of weight ` is:

1

`!

∑
v∈{1,...,p−1}`

|B`(v)|.

Hence, to conclude the proof we will show that
|B`(v)| ≈ N `/|C|. In fact, we will first show that
|A`(v)| ≈ N `/|C| and then deduce the estimate for
|B`(v)|.

Fix some v ∈ {1, . . . , p − 1}`. We will now show
an estimate on |A`(v)|, where the main tool we use is
Fourier analysis. Take any tuple (x1, . . . , x`) ∈ [N ]`,
and consider

µ(x1, . . . , x`) = Ef∈C
[
ωv1f(x1)+...+v`f(x`)

]
,

where ω = e
2πi
p is a p-root of unity. We claim that

if (x1, . . . , x`) ∈ A`(v) then µ(x1, . . . , x`) = 1, and
if (x1, . . . , x`) 6∈ A`(v) then µ(x1, . . . , x`) = 0. This
holds since C is a linear subspace. Hence, either the
inner product of v with (f(x1), . . . , f(x`)) is always
zero; or it is uniformly distributed over Fp when f ∈ C
is uniformly chosen. Hence we have

N−`|A`(v)| = Ex1,...,x`∈[N ] [µ(x1, . . . , x`)]

= Ex1,...,x`∈[N ]Ef∈C
[
ωv1f(x1)+...+v`f(x`)

]
= Ef∈C

∏̀
i=1

Exi∈[N ]

[
ωvif(xi)

]
.



We partition the expectation to the cases where f =
0N and f 6= 0N . When f = 0N then for all i = 1, . . . , `
we have that

Exi∈[N ]

[
ωvif(xi)

]
= 1.

Consider now any f 6= 0N and any i = 1, . . . , `. Since
we assumed C ∩ Const = {0}n, f is not constant. Let
fi : [N ]→ Fp be defined by fi(x) = vif(x). Note that
since C is linear we have fi ∈ C; and since vi ∈ Fp\{0}
then also fi is not constant. Hence∣∣∣Exi∈[N ]

[
ωvif(xi)

]∣∣∣ ≤ bias(C) ≤ δ.

Hence we deduce that

|A`(v)| = N `

|C|
(1 + η)

where |η| ≤ |C|δ`. In particular, if ` ≥ log1/δ |C| +
log(1/ε) we get that η ≤ ε.

To conclude, we need to derive an estimate on
|B`(v)|. Let C`(v) = A`(v) \ B`(v). We will show
that |C`(v)| � |B`(v)|, and hence |B`(v)| ≈ |A`(v)|.
To derive this, note that if (x1, . . . , x`) ∈ C`(v), then
x1, . . . , x` are not all distinct, that is, xi = xj for some
distinct i < j. Define v(i,j) ∈ {1, . . . , p − 1}`−1 by
”joining” xi and xj , i.e. v(i,j)

a = va for 1 ≤ a < i

and i < a < j, v(i,j)
i = vi + vj , v

(i,j)
a = va+1 for

a > j. Then we can identify uniquely (x1, . . . , x`) ∈
C`(v) with x(i,j) = (x1, . . . , xj−1, xj+1, . . . , x`) ∈
A`−1(v(i,j)). Hence we get

|C`(v)| ≤
∑
i<j

|A`−1(vi,j)| ≤
(
`

2

)
|A`−1(·)| ≤ `2

N

N `

|C|

Hence we get that as long as `2 ≤ εN we have

|B`(v)| = N `

|C|
(1± 2ε).

This concludes the proof of (i).
The proof of (ii) is completely analogous. Assume

Const ⊂ C. Define C′ = {f ∈ C : f(0) = 0} so that
C = {f ′ + f ′′ : f ′ ∈ C′, f ′′ ∈ Const}, bias(C′) =
bias(C) and C′ ∩ Const = {0}n. We apply the same
argument as in (i) for the code C′. The only additional
requirement is that v1 + . . .+ v` = 0. Thus one should
not consider A`(v) for all v ∈ (Fp \ {0})`, but only
those corresponding to v ∈ C(p, `). Thus we have that
the number of codewords in C⊥ of weight ` is equal
to 1

`!

∑
v∈C(p,`) |B`(v)|, and the proof follows by the

estimates we proved on |B`(v)|.
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